

lynk documentation

Lynk is a Distributed Lock Manager (DLM) that uses DynamoDB to track the state
of its locks. Lynk is a cooperative locking scheme where each client assumes
that all others in the system are obeying a set of rules in order to assure
the integrity of the locks.

Contents:

	lynk
	lynk package

Getting Started

	Quickstart
	Installation

	AWS Credentials

	Creating a table

	Creating a lock

	Lock entry details

	Context manager

	Teardown

Topics

	Serialization
	Overview

	Serialization

	Deserialization

Indices and tables

	Index

	Module Index

	Search Page

lynk

	lynk package
	Subpackages
	lynk.backends package
	Submodules

	lynk.backends.base module

	lynk.backends.dynamodb module

	Module contents

	Submodules

	lynk.exceptions module

	lynk.lock module

	lynk.refresh module

	lynk.session module

	lynk.techniques module

	lynk.utils module

	Module contents

lynk package

Subpackages

	lynk.backends package
	Submodules

	lynk.backends.base module

	lynk.backends.dynamodb module

	Module contents

Submodules

lynk.exceptions module

lynk.lock module

lynk.refresh module

lynk.session module

lynk.techniques module

lynk.utils module

Module contents

lynk.backends package

Submodules

lynk.backends.base module

lynk.backends.dynamodb module

Module contents

Quickstart

Installation

Lynk is available on PyPi as lynk and can be installed in the usual way
with pip:

$ pip install lynk

AWS Credentials

Lynk uses boto3 in order to make all calls to AWS, which means it uses the
boto3 standard credential chain. Make sure your machine has AWS credentials
configured in the way boto3 expects [https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html].

Creating a table

In order to store the locks we need to create a DynamoDB table. For ease of
getting started there is a command line tool installed along with the package
to help manage lynk tables.

To create a table called quickstart run the lynk create-table command:

$ lynk create-table lynk-quickstart
Creating table lynk-quickstart
Created

With the lynk list-tables command line tool you can check a list of tables
created this way by lynk:

$ lynk list-tables
lynk-quickstart

Creating a lock

Locks are shared through a DynamoDB table, in our case we will be using the
lynk-quickstart we created earlier table. Locks are distinguished by a
lock name, within their table. To get create a lock, we first need to create a
lynk.session.Session that is bound to our table. The session can
then be used to create multiple locks that will be backed by that table.

The easiet way to make a lynk.session.Session is by using the
lynk.get_session() function. This function only takes one argument
which is the name of the table it is bound to. Once a session has been created
it can be used to create lock objects using the
lynk.session.Session.create_lock() method.

import lynk

session = lynk.get_session('lynk-quickstart')
lock = session.create_lock('my lock')

lock is an instance of lynk.lock.Lock which is bound to both our
table lynk-quickstart, and the logical lock name my lock. If we create
another lock object bound to the same table, with the same lock name, only one
will be acquireable at a time, with the second having to wait for the first one
to release before being able to acquire it. This is a little bit awkard to
show in a single code segment since it requires muiltiple threads. Below is a
minimal but complete example of using two threads to contend for the same lock.

import time
import logging
import threading

import lynk

LOG = logging.getLogger(__file__)

def configure_logging():
 LOG.setLevel(logging.DEBUG)
 formatter = logging.Formatter('%(threadName)s - %(message)s')
 ch = logging.StreamHandler()
 ch.setFormatter(formatter)
 LOG.addHandler(ch)

def thread(session):
 LOG.debug('Starting')
 lock = session.create_lock('my lock')
 lock.acquire()
 LOG.debug('Lock acquired')
 time.sleep(10)
 lock.release()
 LOG.debug('Lock released')

def main():
 configure_logging()
 session = lynk.get_session('lynk-quickstart')
 t1 = threading.Thread(target=thread, args=(session,))
 t2 = threading.Thread(target=thread, args=(session,))

 t1.start()
 t2.start()
 t1.join()
 t2.join()

if __name__ == "__main__":
 main()

First, we can ignore the configure_logging function, it just sets up
logging to show which thread is emitting the logs. This makes it easier to track
the flow of our program.

Looking at the main function, the first real thing that happens we create
a session that can create locks bound to our table lynk-quickstart.

session = lynk.get_session('lynk-quickstart')

We then create two thread objects, and pass our session object into each
as a shared variable. Once started each thread will execute the thread
function.

t1 = threading.Thread(target=thread, args=(session,))
t2 = threading.Thread(target=thread, args=(session,))

The last thing the main function does is start both threads, then join on
them, which will wait for them to complete before exiting.

t1.start()
t2.start()
t1.join()
t2.join()

Now we have two threads executing the thread function. Following along each
thread, disregarding the log statements, the first thing it does is create a
lock object.

lock = session.create_lock('my lock')

This means each thread will have its own unique lock object linked logically to
the name my lock. The threads share a session, which is bound to the table
lynk-quickstart. Simply creating the lock does not interact with the
DynamoDB Tables in any way.

Next each thread tries to acquire the lock.

lock.acquire()

This simple statement is what makes the call to write an entry in our DynamoDB
Table. Once an entry is written, this indicates that the lock is in-use and
we are safe to operate on whatever resource this lock was responsible for
protecting. In this example case we simply sleep for 10 seconds and then
release the lock.

time.sleep(10)
lock.release()

The time.sleep(10) call would be replaced with real work in an actual
application. Once the protected resource is done being operated on, and has
been safely written and is ready for another agent to use, we release the
lock. The lynk.lock.Lock.release() call deletes the entry from the table
freeing the lock name up to be used by another agent.

The output of our little sample application is shown below. You can see one
thread gets the lock (in this case Thread-2) and does it work while the
other thread waits for it to be released. Once released, the other thread
repeats the same process:

Thread-1 - Starting
Thread-2 - Starting
Thread-2 - Lock acquired
Thread-2 - Lock released
Thread-1 - Lock acquired
Thread-1 - Lock released

More complex but similar examples can be seen in the
examples [https://github.com/stealthycoin/lynk/tree/master/examples]
directory of the source repo.

Lock entry details

If you have the AWS CLI installed you can run the following command while the
example script above is running (shouldn’t be too difficult since the script
takes around 30 seconds to complete):

$ aws dynamodb scan --table-name lynk-quickstart --query Items
[
 {
 "lockKey": {
 "S": "my lock"
 },
 "leaseDuration": {
 "N": "20"
 },
 "versionNumber": {
 "S": "dabbbfde-93cb-47f8-a249-fbae84c4a5e3"
 },
 "hostIdentifier": {
 "S": "Johns-MacBook-Pro.local"
 }
 }
]

While the lock is held by a thread, we can see the entry that marks it as in
use. It has four components, the lockKey which is clearly the lock name
that we selected when creating our lock object. A leaseDuration, this is
the amount of time we have a lease on this lock. Any other agent that wants
to acquire this lock must wait at least that long before trying again. Our
example code will refresh this lock automatically, even if we had slept longer
than 20 seconds.
The versionNumber is used as a fencing token, each write to this entry
changes this value. You can read more about how the leaseDuration and
versionNumber are used to ensure the lock integrity in the documentation
for the lynk.techniques.VersionLeaseTechinque. Finally there is a
hostIdentifier which is just there to show the host that created the lock.
This can be used for debugging a distributed multi-agent system all using one
lock table.

More examples can be found in the
examples [https://github.com/stealthycoin/lynk/tree/master/examples]
directory in the source repo.

Context manager

In the above example we manually call acquire() and release(). This depends on no
exceptions ocurring, and would generally be safer in a try: finally: block. For
convenience the lynk.lock.Lock object can be called and used as a context manager.
The following code:

lock.acquire()
time.sleep(10)
lock.release()

Can be re-written more safely, and conveinently, as:

with lock():
 time.sleep(10)

This ensures the releasing in the lock in the case of an unexpected exception.

Teardown

To tear down the resources created during the quickstart tutorial run the
lynk delete-table command:

$ lynk delete-table lynk-quickstart
Deleting table lynk-quickstart
Deleted

Verify that there are no left over tables checking that the following has no
output:

$ lynk list-tables

Serialization

Overview

A lock can be used to control access to some shared resource. In a serverless
environment jobs can be broken up into many pieces often being operated on by
a sequence of disparate functions. In order to hold a lock between these
separate functions there needs to be a mechanism for a lock to be transfered
between seprate processes, or passed through a queue etc.

To accomodate this use case, Locks are serializable. A lock can be taken
against a resource in one process, serialized and passed into some other
process. The target process can then derserialize the lock and continue
operating on the same resource as the first.

Serialization

Lynk Locks use a simple JSON serialization scheme, to allow them to be passed
around as plain text between processes.

To serialize a Lock use the .serialize() method.

import lynk

session = lynk.get_session('lynk-quickstart')
lock = session.create_lock('my lock')
serialized_lock = lock.serialize()

The serialized_lock variable is now a plain UTF-8 string that can be sent
to another component of a complex system.

Deserialization

A lock object can be loaded using the Session method
deserialize_lock() and passing it the serialzied_lock value from the
previous section. If it successful the new process can now start
operating on the protected resource. Otherwise it will raise the
LockAlreadyInUseError to indicate that the lock was stolen between
serialization and deserialization.

import lynk
from lynk.exceptions import LockAlreadyInUseError

try:
 session = lynk.get_session('lynk-quickstart')
 lock = session.deserialize_lock(serialized_lock)
 do_stuff_with_locked_resource(lock)
except LockAlreadyInUseError as:
 print("Someone else stole the lock.")

Index

	Serialization
	Overview

	Serialization

	Deserialization

 nav.xhtml

 Table of Contents

 		
 lynk documentation

 		
 lynk

 		
 lynk package

 		
 Subpackages

 		
 Submodules

 		
 lynk.exceptions module

 		
 lynk.lock module

 		
 lynk.refresh module

 		
 lynk.session module

 		
 lynk.techniques module

 		
 lynk.utils module

 		
 Module contents

 		
 Quickstart

 		
 Installation

 		
 AWS Credentials

 		
 Creating a table

 		
 Creating a lock

 		
 Lock entry details

 		
 Context manager

 		
 Teardown

 		
 Serialization

 		
 Overview

 		
 Serialization

 		
 Deserialization

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

